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We investigate the impact of finite-volume effects on the critical number of flavors, N}, for chiral symmetry
restoration in QEDj5. To this end we solve a set of coupled Dyson-Schwinger equations on a torus. For order
parameters such as the anomalous dimension of the fermion wave function or the chiral condensate, we find
substantial evidence for a large dependence on the volume. We observe a shift in N; from values in the range
of 3.61 SN;S 3.84 in the infinite-volume and continuum limit down to values below Ny= 1.5 at finite volumes
in agreement with earlier results of Gusynin and Reenders in a simpler truncation scheme. These findings
explain discrepancies in N} between continuum and lattice studies.
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I. INTRODUCTION

Dynamical chiral symmetry breaking in the theory of
quantum electrodynamics in (2+ 1) dimensions (QED3) (Ref.
1) has been studied quite intensively over the years. The
problem is of considerable interest for two reasons. On one
hand, QED; has enough similarities to quantum chromody-
namics (QCD) such that analogies to the more complicated
non-Abelian case may be drawn. On the other hand, QED;
itself is of considerable interest due to possible applications
in condensed-matter systems.

In particular, QED; with N,=2 flavors of massless fermi-
ons has been suggested as an effective low-energy theory of
high-T, cuprate superconductors.>”* These possess an uncon-
ventional d-wave symmetry of the pairing condensate, with
nodes at the electronic Fermi surface allowing for a descrip-
tion in terms of massless nodal quasiparticles. The quasipar-
ticles do not couple to an external electromagnetic field and
hence represent pure spin degrees of freedom; a spin-charge
separation has taken place. The interaction of these spinons
with the collective topological excitations of the gap can be
described by a U(1) gauge theory. Since furthermore the mo-
tion of the quasiparticles is mainly confined to the two-
dimensional copper-oxygen planes in these systems, one
ends up with quantum electrodynamics in (2+ 1) dimensions.
Depending on whether the system is ordered or disordered it
is either in an insulating quantum antiferromagnetic (AF)
phase or a pseudogap (PG) phase with remnant properties of
the underlying superconductor. In the gauge theory the AF
phase corresponds to a phase with broken chiral symmetry
and long-range correlations due to massless photons. In the
PG phase the fermions are massless and the fermion wave
function as well as the photon propagator develop power
laws at small momenta with a fractional anomalous
dimension.>?

The above considerations explain the interest in determin-
ing N5, the critical number of fermion flavors for the chiral
phase transition of QED5. If N$>2 then the effective low-
energy theory is chirally broken at zero temperature. For the
superconductor this means that the theory displays a phase
transition between the superconducting and the antiferro-
magnetic phase when doping is varied.>3 If on the other hand
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N?<2 the system goes from a superconducting to a
pseudogap phase when underdoped.

The value of N;; has been investigated in a number of
studies from Dyson-Schwinger equations (DSEs) in the
continuum®>~'# and lattice gauge theory.">"'® While the
former allows for numerical as well as analytical studies in
principle there remains the question of the importance of
truncation artifacts. For N% a partial answer has been ob-
tained in Ref. 5, where it was found that the details of the
fermion-photon vertex only have a minor quantitative impact
on N¢. In particular for all vertex dressings employed Nji
stayed well above N;=2.

In all studies of dynamical chiral symmetry breaking in
continuum QEDj5 a clear separation of scales has been found.
The intrinsic scale of the theory is given by the dimensionful
coupling constant aszez/ 8. Then a second and much lower
scale is given by the dynamically generated fermion mass
M (0) in the chiral limit. Related to this one has small values
for the other order parameter, the chiral condensate. On the
lattice with its finite volume this separation of scales is hard
to bridge. Consequently, recent studies for two flavors'” and
four flavors!”!8 determined bounds on the chiral condensate,
but no definite value for N} could be extracted. A definite
signal for chiral symmetry breaking was obtained only for
one flavor.!® A very recent calculation claims that N¢=~1.5
with the caveat of volume and discretization artifacts.'”

In general, the presence of an infrared (IR) cutoff due to
the finite volume reduces the value of the critical number of
flavors. This was demonstrated by Gusynin and Reenders?
in a simple truncation scheme for the DSEs. They considered
an approximation to the DSE for the fermion self-energy
which neglects corrections to the fermion wave function and
the fermion-photon vertex. The photon is then given by its
leading behavior in the 1/N; expansion. In this work we
elaborate on these findings by considering a more sophisti-
cated truncation scheme which explicitly takes into account
nonperturbative effects in all of these quantities. In addition
we follow a different strategy to assess the volume effects by
evaluating the system on a three-torus. A corresponding tech-
nique has been applied in QCD, to determine finite-volume
effects in the quark and gluon propagators.?!~23

This work is organized as follows. In Sec. II we recall
results for QEDj in the infinite-volume and continuum limit.
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FIG. 1. The Dyson-Schwinger equations of the photon and fer-
mion propagators in diagrammatic notation. Wiggly lines denote
photon propagators and straight lines the fermion. A black dot de-
notes a bare fermion-photon vertex, while the open circle denotes a
dressed one.

We present the Dyson-Schwinger equations for the fermion
and photon propagators and discuss their asymptotic proper-
ties. In Sec. III we recall general conditions for chiral sym-
metry breaking on a finite volume, formulate the DSEs in a
box, and discuss our numerical methods to solve these. In
Sec. IV we present our numerical results for the propagators
at finite volume and the critical number of flavors N; as a
function of the box size. In Sec. V we conclude.

II. QED; IN THE INFINITE-VOLUME AND CONTINUUM
LIMIT

A. Dyson-Schwinger equations in QED;

We consider QED; with a four-component spinor repre-
sentation for the Dirac algebra and Ny fermions. This allows
a definition of chiral symmetry similar to the cases of QED,
and QCD,. With massless fermions, the Lagrangian has a
U(2Ny) “chiral” symmetry, which is broken to SU(Nj)
X SU(Ny) X U(1) XU(1) if the fermions become massive.
The order parameter for this symmetry breaking is the chiral
condensate which can be determined, e.g., via the fermion
propagator.

The Dyson-Schwinger equations for the photon and fer-
mion propagators in Euclidean space are given diagrammati-
cally in Fig. 1. They read explicitly

d3
7f)sTr[V,LS(q)FV(q,k)S(k)],

D3,ulP) = Dy up) = ZiNye® f B
(1)

d’q

2} Y@V (q.p)D ,,(k),

(2)

with the momentum routing k,,=¢q,,—p,,. Here N, denotes the
number of fermion flavors and Z; is the renormalization con-
stant of the fermion-photon vertex I,

In Landau gauge the general form of the dressed fermion
propagator S(p) and the photon propagator D,,,(p) is given
by

S (p) =S, (p) +Zlezf
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__ipAG) + B
S(p) - p2A2(p2) + B2(p2) ? (3)
2
D,u,,(p) = <5/w_ EI%})&I;)
p p
(s _Pubv 1
(2 = >p2[23 TR

with the photon dressing function G(p?), the photon polar-
ization II(p?), and renormalization function Z; and the fer-
mion dressing functions A(p?) and B(p?). These can be rear-
ranged into the renormalization-group invariant fermion
mass function M(p?)=B(p?)/A(p?) and the fermion wave
function Zf(pz) =1/A(p?). Another renormalization-group in-
variant is the “running coupling” e>G(p?) built from the
renormalization-point-dependent photon dressing function
G(p?) and the renormalized coupling e?. The bare-
renormalized fermion propagator is given by S;'(p)=Z,(ip
+Z,,m), where m is the renormalized current fermion mass,
Z,, is the mass-renormalization function, and Z, the corre-
sponding one for the fermion wave function. Note that in
QED we have the Ward-Takahashi identity Z,=2,.

The gauge dependence of the fermion mass and wave
function and, correspondingly, the fermion-photon vertex has
been a much debated issue in the past, see, e.g., Refs. 5 and
24-32 and references therein. There in particular the techni-
cal question of how to truncate the fermion-photon interac-
tion to obtain a gauge covariant pattern of chiral symmetry
breaking and restoration has been discussed. This issue is not
quite settled yet; however there are clear indications>3>33
that Landau gauge is preferred in the sense that it allows for
particularly simple approximation schemes. In all other lin-
ear covariant gauges paran}etrized by the gauge parameter &
a gauge-dependent scale % appears which complicates mat-
ters considerably. This is why we choose Landau gauge in
this work.

A range of Ansdtze for the fermion-photon vertex have
been investigated in Ref. 5. There it has been found that the
critical number of flavors N;L obtained with the most elabo-
rate construction, obeying the Ward-Takahashi identity, is al-
most similar to the one of the most simple Ansatz, a bare-
renormalized vertex,

szzl’)’w (5)

Therefore to keep matters as simple as possible we will only
present results for the bare vertex approximation in this
work. We did check, however, that more sophisticated An-
sditze do not alter the main conclusions presented below. In
addition, a general analysis of the infrared behavior of QEDj3
in the framework of functional renormalization-group equa-
tions indicates that in Landau gauge bare vertex (5) may
even be the best possible choice.®

Substituting this vertex into the fermion and photon
DSE:s, taking appropriate traces and contracting the photon
DSE with the projector,
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P;/.V(p) = (S,U.V_ g_#’%’ (6)
p
with {=1 we arrive at
dq 2B(¢) Gk
B(p?) = Z,Z,,m + Z3¢* f ,
’ ) emPeAd ) + B K
(7)
d’q Alg®) G(k*)
A(p?) =2, + Z3¢*
PI=BALE | G FA P+ B
2 2_.2\2
X<__2+(p 2q2) )v (8)
2p 2k°p
L Zy+11(p?)
T
d3q
2 2
=Z3—Zze Nf (277_)3
X 1 Wi(p*.q% k)
CANG) + B () AR + B2 T
©)
where we used Z,=Z, and the subtracted kernel,
~ 2K*(3-20)
W, (p%q% k%) = W, (p2 g2 k%) — e (10)
with
k* 1-¢ 24 1-0¢* &q*
Wi(p?,q% ) = §—4+k2( L2 )— Rt L A
p p p p p

(11)

in the photon equation. As explained in Appendix A of Ref. 5
the subtraction of the term proportional to (3—¢) in Eq. (10)
is necessary to avoid spurious linear divergences in the
photon-DSE generated by the regularization procedure (a
hard cutoff) used in the numerical treatment of the equations.
The choice {=1, i.e., the transverse projection of the photon
equation, is mandatory to avoid the backreaction of spurious
longitudinal terms into the right-hand side of the photon
equation. Compared to Ref. 5, where {=3 has been used, this
treatment leads to a quantitatively improved value for the
critical number of flavors (see below). Note, however, that
the effects of varying { are quantitatively small in general;
all qualitative conclusions derived in Ref. 5 and also here are
independent of the choice of {.

B. Asymptotic behavior of the propagators

An often used approximation to determine the asymptotic
behavior of the fermion and photon dressing functions has
been the 1/N, expansion. This expansion is equivalent to a
perturbative expansion for small e> while keeping «
=Nfez/ 8 fixed. As QED; is an asymptotically free theory this
expansion does provide correct answers in the ultraviolet.
For the photon polarization and the vector dressing function
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of the fermion one finds for Ny massless fermion flavors,®

Ne* a

N(p*> a)= 1=~ (12)
8p p

A(p*> a)=1. (13)

For the mass function of the fermion one can use the opera-
tor product expansion to obtain

2+ £07)

M(P2>a)= 4 p2

; (14)

with the chiral condensate (PW¥). Note that the condensate
can also be determined from the trace of the fermion propa-
gator:

d’q B(q°)

=292) Gy i) + )

(15)

In the infrared-momentum region the 1/N; expansion is
clearly not sufficient. Here one has to resort to a self-
consistent analysis of the DSEs in terms of asymptotic power
laws. This method is well developed in QCD, (Refs. 34-37)
and has been adapted to QEDj5 in Ref. 5. Such an analysis is
valid if no scales are present, i.e., in the deep infrared-
momentum region p <<« and only in the absence of fermion
masses. The appearance of infrared power laws with poten-
tially fractional anomalous dimensions is thus an indicative
and characteristic property of the symmetric phase of QEDj;.

For a bare fermion-photon vertex the infrared behavior of
the vector fermion dressing function and the photon polar-
ization in the chirally symmetric phase can be written as

AP ~p*, Tp) ~p ' (16)

In case of a dressed fermion-photon vertex according to the
Ward-Takahashi identity the corresponding power laws are

A(p?) ~ p*, I(p*) ~ p~' =%, (17)

These expressions solve the DSEs in the chirally symmetric
phase as described in detail in Ref. 5 (see also Ref. 32 for a
rederivation from a slightly different perspective).

The value of « as a function of N can then be determined
from the DSEs using a procedure given in detail in Ref. 5.
The solutions for a bare vertex with and without the sub-
tracted term in Eq. (10) is plotted in Fig. 2. For N;>1.5 the
exact solutions can be represented by the fits

0.142  0.002 1
E;?e= + ) 0(_3>, (18)
N, N7 N;
0.137+O.058+0( 1 ) (19)
Kbare = ) 3

A corresponding fit for the bare vertex and a Ward-Identity
improved vertex for {=3 is given in Ref. 5. The difference
between Egs. (18) and (19) represents the systematic uncer-
tainty in our numerical calculation due to the cut-off regular-
ization procedure used. For dimensional regularization the
subtraction of the term in Eq. (10) is not necessary, and

064513-3



GOECKE, FISCHER, AND WILLIAMS

031~

\ === with subtraction
\ — without subtraction

0.25
0.27
0.157
0.17

0.05

FIG. 2. (Color online) The infrared exponent « as a function of
the number of flavors Ny in the symmetric phase of QED;.

therefore the unsubtracted result [Eq. (19)] should be viewed
as the exact one for the bare vertex truncation scheme. In
principle one can reproduce Eq. (19) also in a numerical
treatment of the DSEs with a hard cutoff when vertex cor-
rections around the cut-off scale are included (see Ref. 38 for
details). However, this procedure is much more involved
than the simple subtraction scheme of Eq. (10). Since the
difference between Eqgs. (18) and (19) is rather small in the
interesting region above N;=2 and therefore unimportant for
all of the conclusions of the present work, we resort to the
simple subtraction scheme [Eq. (10)] and consequently re-
produce Eq. (18) in our numerics.

The critical number of flavors N; where chiral symmetry
is restored can be determined analytically from the DSE for
the scalar fermion dressing function B(p?). Again we refer
the reader for details to Ref. 5 and merely state the result

(Nf)pame = 3.84, (20)
(N;)bare ~3.61. (21)

The corresponding result from the functional renormalization
group™ is (N9)pare = 3.6, in agreement with our result for the
unsubtracted equation. Numerical results for Ward-identity
improved vertices® lead to results in the range of 3.5-4.
These numbers can be contrasted with (N;‘)I/Nf:n/ e
~3.24 from the 1/ Nfexpansion.7 Note that all these results
are far above N;=2 relevant for the description of high-T,
cuprate superconductors as discussed in Sec. I.

Finally we wish to emphasize that these power-law solu-
tions can only be obtained when the full structure of the
propagator DSEs is taken into account. The authors of Refs.
9 and 10 did not find a solution corresponding to a symmet-
ric phase in their truncation scheme because the feedback
from the function A onto the vacuum polarization is not
taken into account. This then prohibits the appearance of
power laws and therefore does not allow for the appearance
of the chirally symmetric phase and should be discarded.>*

II1. QED; AT FINITE VOLUMES

A. Chiral symmetry breaking in a box

Before we embark on our investigation, let us recall the
general finite-volume behavior of the chiral condensate.’

PHYSICAL REVIEW B 79, 064513 (2009)

The fermion propagator in its spectral representation is given
by

E%m@w

m—IN

Salx,y) = ; (22)

n
where u,(x) and \,, are the eigenfunctions and eigenvalues of
the Euclidean Dirac operator, Du,(x)=\,u,(x). The gauge
field A is treated as an external field. These eigenfunctions
occur either as zero modes or in pairs of opposite eigenval-
ues. Setting x=y, integrating over x, and neglecting the zero
mode contributions, one obtains

I 2m I
— | Sy =2 . 23
va ale) V)\n2>0m2+)\i 2)

The chiral condensate can be deduced by averaging the left-
hand side of this equation, over all gauge-field configura-
tions, and then taking the infinite-volume limit to give

p(\)
m2+\%’

(qq)=- ZmJ d\ (24)
0

where p(\) is the mean level density of the spectrum, which
becomes dense in the infinite-volume limit. In the chiral
limit, m — 0, only the infrared part of the spectrum contrib-
utes and one finally arrives at the Banks-Casher relation,*

(aq)=—mp(0). (25)

If the two limits are interchanged, i.e., if one takes the
chiral limit before the infinite-volume limit, one has a dis-
crete sum in Eq. (23) and the infrared part of the spectrum
cannot trigger a nonvanishing chiral condensate: chiral sym-
metry is restored. If, however, at a given volume the explicit
fermion mass m is not too small, one can still observe the
spontaneous formation of a quark condensate. If the factor
(m?>+\2)~" varies only slightly with n, the sum in Eq. (23)
can still be replaced by an integral and Eq. (25) remains
valid. For this to be a legitimate approximation one needs
m>AN~1/Vp(\)=m/(V|{gq)|), at the lower end of the
spectrum. Thus one obtains the condition,*

Vm[{gq)| > . (26)

This relation reveals the crux of the matter. In principle, if
the volume is large enough, the necessary quark masses are
academically small and may even be neglected in the nu-
merical treatment. What counts as large in this context, how-
ever, depends sensitively on the size of the chiral condensate.
In QED; the condensate becomes extremely small already
well below the critical number of flavors N} of the chiral
phase transition.> Thus although a formulation on a finite
volume may do well for Ny=1, all signals of dynamical chi-
ral symmetry breaking will be lost already well below the Nji
of the theory in the infinite-volume and continuum limit.
This behavior will be quantified below.

B. DSEs on a torus

On a compact manifold, the photon and fermion fields
have to obey appropriate boundary conditions in the time
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FIG. 3. (Color online) Two-dimensional sketch of the momen-
tum grid dual to the three-torus for a fixed Cartesian momentum
cutoff. The hyperspheres depicted by dashed lines are not complete
in the sense that additional momentum points on these spheres are
generated if the cutoff is increased. The torus equivalent of an O(3)-
invariant cutoff used in our calculations sums only over complete
hyperspheres, which are indicated by fully drawn circles.

direction. These have to be periodic for the photon fields and
antiperiodic for the fermions. For computational reasons it is
highly advantageous, although not necessary, to choose the
same conditions in the spatial directions. We choose the box
to be of equal length in all directions, Ly=L,=L;=L, and
denote the corresponding volume V=L?. Together with the
boundary conditions this leads to discretized momenta in
momentum space. Thus all momentum integrals appearing in
the Dyson-Schwinger equations are replaced by sums over
Matsubara modes.

On a torus with antiperiodic boundary conditions for the
fermion fields, the momentum integral changes into a sum of
Matsubara modes,

3
f(;gg---)eé ORES) 27)

ny,np.n3

counting momenta q,=2;-; 3(27/L)(n;+1/2)é;, where é; are
the Cartesian unit vectors in Euclidean momentum space.
For the photon with periodic boundary conditions the mo-
mentum counting goes like q,=2,_; 3(27/L)(n;)é;. For the
numerical treatment of the equations it is convenient to rear-
range these summations such that they represent a spherical

coordinate system,”! see Fig. 3 for an illustration. We then
write
53 =536 8)
; == (),
L ny,ny,ng L Jj.m

where j counts spheres with q,q,=const and m numbers the
grid points on a given sphere. The corresponding momentum
vectors are denoted by q,,; and their absolute values are
given by g, ;=|q,,|. It is then a simple matter to introduce
the torus equivalent of an O(3)-invariant cutoff by restricting
j to an interval [1, N]. This procedure is equivalent to “cut-
ting the edges” of our torus as indicated in Fig. 3.
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The resulting DSEs are then given by

2 N 2 2

¢ 2B(4;,) G2, )
B(pi,)=ZZme+Z§L3 > 555 s Cidim
jon @A L) + B ) iy

b}

(29)
2 N 2 2
e A(g;,) Gk jm)
A(pi1)=ZZ+Z%EE 2 2/ 2 - 2/ 2 2’1’]’
im A7) + B Kipjom
|22 2 _ 22
(-t B i) 30)
2pi, 2ki,l,j,111pi,l
1 z ZzezN % 1
——— =7, bl
G(pzz,l) g L3 Jj.m qlz,mAZ(Qim)"'Bz(qim)

1
X
i A (K ) + B )

A
Wi G moKis jm) -

31)

Note that the momentum argument k of the photon self-
energy in the fermion DSE is the difference k;,;,=p;;—q,,
of two antiperiodic Matsubara momenta and thus lives on a
momentum grid corresponding to periodic boundary condi-
tions, as it should.

The DSEs can be solved numerically employing well-
established methods. Our numerical method on the torus is
outlined in Ref. 22, the corresponding continuum method as
well as details on the renormalization procedure of the DSEs
are given in Ref. 5.

Note that the propagators determined from the continuum
version of the DSEs, Egs. (7)—(9) are independent of the
regularization procedure. In our numerical calculations in the
infinite-volume and continuum limit we use a subtracted ver-
sion of these equations and an O(3)-invariant UV cutoff
which can be sent to infinity at the end of each calculation.
These DSEs therefore represent not only the infinite-volume
limit but also the continuum limit (in coordinate space) of
the representation given by Egs. (7)—(9) of the DSEs on a
torus. We use the phrase infinite-volume and continuum limit
to indicate this simultaneous removal of both an ultraviolet
and an infrared cutoff.

IV. NUMERICAL RESULTS
A. Finite-size effects: Fixing the UV cutoff

Before we investigate the finite-volume effects of various
quantities of interest we have to clarify whether there are
sizable effects due to the finite size of the system correspond-
ing to a fixed ultraviolet momentum cutoff. Part of these
effects are removed by our choice of cutting the edges of the
torus described in Sec. III. The remaining finite-size effects
can be evaluated by varying the size of the cutoff. Here, a
natural minimal cutoff is given by the intrinsic scale «
=N;e?/8 of QEDj. Thus, working in the range 0 <N,;=38, we
anticipate that finite-size effects are of minor importance for
cutoffs larger than the intrinsic scale, i.e., A>=e*. Indeed,
this is the case as can be seen from the two plots in Fig. 4.
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FIG. 4. (Color online) Fermion mass function M(p?) and wave
function Zf(pz) as a function of scaled momentum p?/e*. The vol-
ume of the box corresponding to the smallest available momentum
is kept fixed and the ultraviolet cutoff is varied. Here N counts the
number of momentum points in one direction of our torus, i.e.,
N=100 means that we employed a torus with 200° momentum
vectors. This translates into  the cutoffs Aév
=0.15¢*,0.62¢*,2.47¢*,9.86¢*,39.5¢*.

Shown are the fermion mass function M(p?) and wave func-
tion Z«p?) as a function of scaled momentum p?/e* for vari-
ous cutoffs between Ay=0.15¢* and AJ,=39.5¢*. The
number of fermion flavors is chosen to be Np=1, similar
results are obtained for other choices. The box volume for
the fermions is related to the lowest momentum point p2. by
V=L3, with L=\37/p,,;,. Here we use L=390/¢>. Note that
for the photon the box volume is related to the lowest mo-
mentum point by V=L with L=27/p,;,. The same box
length then results in a slightly different value for the lowest
momentum point in the photon dressing function. We refrain
from showing the photon explicitly here since the finite-size
effects are similar to the ones for the fermions.

In Fig. 4 the finite-size effects are visible only for the
smallest cutoff. There are effects in both the infrared and
ultraviolet momentum regions, where a number of momen-
tum points deviate from the results with larger cutoffs. This
is true for the renormalization-point-dependent fermion wave
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function (normalized to match the continuum result) but also
for the renormalization-point-independent fermion mass
function. The perhaps surprising observation that the varia-
tion in an ultraviolet cutoff also affects the infrared behavior
of the dressing functions implies a certain entanglement be-
tween the infrared and ultraviolet modes of a gauge theory.
Similar effects have been found in four-dimensional Yang-
Mills theory, see, e.g., Ref. 38 and references therein.

We also need to comment on the fact that we observe
dynamical chiral symmetry breaking in our system at all de-
spite in practice working with a vanishing bare quark mass.
In the continuum formulation this entails working in the chi-
ral limit. However, due to the formal reasons discussed in
Sec. IIT A this cannot be true on a finite volume since taking
the chiral limit before the infinite-volume limit inevitably
leads to the loss of dynamical chiral symmetry breaking.
However, this is not what we observe here. Indeed, the vol-
umes we use are large enough to allow for extremely small
bare fermion masses according to the relation of Eq. (26). In
practice, this allows one to neglect the fermion mass entirely
in the numerical treatment of the DSEs. However it is im-
portant to keep in mind that this means we are working close
to the chiral limit but not in the chiral limit.

We conclude Sec. IV A with the observation that from
about A%V=e4 onwards almost no finite-size effects are
present. We therefore consider this value a lower bound for
admissible cutoffs on a torus, in agreement with our general
considerations concerning the natural scale in QEDj;. This
finding also agrees with corresponding results on finite-size
effects in lattice simulations, see Ref. 19 and references
therein. In order to be absolutely sure that cut-off effects do
not play any role in what follows we use the somewhat larger
cutoff Afy,=2.35¢* from now on.

B. Finite-volume effects: Toward the infinite-volume limit

We are now in a position to study the finite-volume effects
occurring for the fermion and photon propagators on a torus.
To this end we keep the ultraviolet cutoff of our system fixed
and vary the infrared cutoff in the range of Le?=200-3000.
We show the resulting behavior of the fermion mass and
wave function as well as the photon together with the corre-
sponding continuum results in Fig. 5. Again, we choose N
=1. The variation in the volume clearly results in the loss of
a substantial amount of generated fermion mass when the
volume gets smaller and smaller. For even smaller volumes
than shown in the figure chiral symmetry is restored in
agreement with the condition Vm|{gg)|>m discussed in
Secs. III A and IV A. On the other hand, we observe that
extremely large volumes are needed to account for the full
effect of dynamical chiral symmetry breaking observed in
the infinite-volume and continuum limit. This is in marked
contrast with the behavior of the quark sector of QCD, (Ref.
41) and can be explained by a closer look at the scales in-
volved. Whereas in QCD, the generated quark masses
[M(0)=300-400 MeV] are of the same order as the intrin-

sic scale of the system (AgCSD%ZSO MeV), the situation is
clearly different in QED5. Here our characteristic scale is of
the order of a=¢2/8, whereas the generated fermion masses
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FIG. 5. (Color online) Fermion mass function M(p?), wave
function Zf(pz), and photon self-energy II(p?) as a function of
scaled momentum p?/e*. The ultraviolet momentum cutoff is kept
fixed at Afy=2.35¢* and the box length is varied from Le?
=200-3000.

are of order of 1072¢? as can be seen from the plot. To keep
volume effects small, this scale has to be well accommodated
by the system on a box, which translates to a lowest momen-
tum to be much smaller than p2= 107%¢%. Indeed, this is what
we observe. Choosing the volume large enough that the low-
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est momentum is well below this scale, we approach the
infinite-volume and continuum limit. This is true for all three
dressing functions; the fermion mass function M (pz), the fer-
mion wave function Zf(pz), and the photon self-energy

(p?).

C. Finite-volume effects: Z{Ny) and r(Ny)

Let us now examine the influence of finite-volume effects
on the critical value N; where the system undergoes a phase
transition from the chirally broken into the chirally symmet-
ric phase. This phase transition is marked by the change in
the infrared asymptotics of the fermion wave function Zf(pz);
for N < N]‘L this function is a constant in the infrared, whereas
for Nf>Nj$ it develops a power law with N-dependent ex-
ponent «, see Ref. 5. In a sense, « can be viewed as an order
parameter of this phase transition. (Note, however, that this
transition is not a first-order or second-order one but has
properties of a conformal phase transition.*?) We exhibit this
behavior of «k by fitting a power law in the infrared to the
fermion wave function,

Zp*) =C(p)™", (32)

which is related to the fermion vector dressing function by
Z;=1/A. Both, the coefficient C and the power x may de-
pend on Ny.

To visualize this procedure the fermion wave function Z is
shown in the upper panel of Fig. 6 for a box with Le?
~800 for different numbers of flavors N. One clearly sees
the aforementioned behavior: for Ny =2.0 the function devel-
ops a constant in the infrared region (i.e., k=0) whose value
is proportional to Ny The phase transition occurs for this
specific volume for 2.0<NJ‘;<2.2. For Ny=2.2 one observes
a power law of the wave function at small momenta. The
coefficient of this power law is still proportional to Ny, how-
ever the exponent « decreases with growing N according to
Eq. (18). Consequently we observe a decrease in the function
Zf(pz) with growing Ny in the symmetric phase. As a result
one could determine N; as the number of flavors for which Z;
is maximal at a given infrared momentum. This is also the
case in the infinite-volume and continuum limit.’

As an (equivalent) alternative we determine N; by fitting
power law (32) to our numerical results for Zf(pz) in the
infrared-momentum region. There is a caveat here: similar to
four-dimensional Yang-Mills theory one observes that power
law (32) can only be seen for momenta 1/L<p<e?. This
behavior is generic on a torus.?® To obtain significant results
for our infrared coefficients we therefore have to perform the
fit for momentum points significantly larger than the lowest
one. In practice we chose momenta from the fourth point
onwards.

The resulting dependence of the exponent x on Ny is plot-
ted in the lower panel of Fig. 6 for several volumes of the
box together with the corresponding function in the infinite-
volume and continuum limit. At infinite volume the function
k(Ny) is zero for Ny<<N;=~3.84 and equal to the analytic
result of Eq. (20) in the symmetric phase above Nj. For a
given finite volume the phase transition is still indicated by a
maximum in K(Nf). However, there is an additional region at
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FIG. 6. (Color online) Upper plot: Fermion wave function
Zf{pz) as a function of scaled momentum p?/e* and the number Ny
of fermion flavors. Note that for clarity of the figure from p?/e*
=10"3 upwards only results for a selected number of momentum
points on the torus are shown. Lower plot: The resulting value of
the infrared exponent « as a function of Ny for different volumes.

Ny< N}(L), where the function rises slowly toward its maxi-
mal value. This region is generated by the finite infrared
cutoff of the system in a box, which prevents the fermion
wave function Z«(p?) from bending toward a finite
asymptotic value at p?=0. This effect mimics a power law at
values of Ny where the system is still in the chirally broken
phase. With increasing volume this region gets smaller and
smaller until it reaches the sharp rise of the function in the
infinite-volume and continuum limit as shown in Fig. 6.

As a result we find a critical number of flavors which
depends upon the volume of the torus. The explicit values
are shown in Fig. 7 together with corresponding results from
Ref. 20. In the following we concentrate on the solutions
close to the chiral limit and postpone the discussion of the
(orange) curve with large bare fermion mass to Sec. IV C.

For volumes that are not too large, our solutions and the
ones reported in Ref. 20 can be well fitted by a form,

b
- (LEZ)I/S'

Ni=a (33)

For our results we obtain a=3.23 and b=10.64, shown as
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FIG. 7. (Color online) The critical number of flavors N} as a
function of inverse box length 1/L"3. In the chiral limit we show
the results of our calculation (chiral) compared to the corresponding
one of Ref. 20 in a simpler truncation scheme. The dashed lines are
linear extrapolations to the infinite-volume limit. We also show re-
sults for a bare fermion mass m=0.0024¢> comparable to the ones
used in lattice calculations.

dashed line in the plot. Interestingly, to high precision the
exponent of the box length in this fit is given by —1/3 al-
though we do not have a good explanation for exactly this
behavior. In terms of (1/L)"? the fit then suggests a linear
extrapolation to the infinite-volume limit. However, it turns
out that this linear behavior breaks down for extremely large
volumes. This is evident for the results from Gusynin and
Reenders.?’ The deviation from the linear behavior is quan-
titatively important: for the truncation of Gusynin and Re-
enders a linear extrapolation to the infinite volume results in
N$==2.52 as compared to the infinite-volume result N%=3.2.
(Note that the curve gets extremely steep for the very largest
volumes, which are not plotted.) For our results we find a
value of N;%3.23 for the linear extrapolation, whereas the
analytical infinite-volume result is N?%3.84. Although this
difference is not huge, it highlights the need for nonlinear
extrapolation procedures to the infinite-volume limit. Unfor-
tunately our largest volumes are not yet large enough to pen-
etrate this region of nonlinearity.

D. Nonvanishing bare fermion masses

In this subsection we investigate the consequences of ex-
plicit bare fermion masses m, in the Lagrangian of QED; on
the chiral phase transition. To this end we determined the
properties of the system in the infinite-volume and con-
tinuum limit by solving the corresponding DSEs for a range
of different bare fermion masses. For any given mass and
varying N, we find that the fermion wave function never
develops a pure power law in the infrared. Instead there is a
region 0 <p<Ag, where the function is constant and a re-
gion A <p < a where a power law is present. The scale Az
depends on the explicit fermion mass as well as on the num-
ber of flavors. We conclude from this that away from the
chiral limit the infrared exponent « is no longer an order
parameter. As concerns the global behavior of Zf(pz) we still
observe the behavior discussed above Eq. (33): at a small
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enough momentum p? the value of the function Zf(pz) in-
creases with N, up to a certain point at a critical value N} and
decreases again if N grows further. In the chiral limit this
critical value N]Cc marked the chiral phase transition. Here,
however, this seems not to be so. The fermion mass function
M(0) decreases exponentially with N without a trace of a
rapid change around N;. We therefore conclude that there is
no phase transition in the infinite-volume and continuum
limit for QED5 with nonvanishing bare fermion masses .

On a torus with a given volume, however, the scale
Ar(Ny) decreases with N and can become lower than the
lowest momentum point p,,;, on the torus. Consequently one
then sees a pure power law in Zf(pz) for momenta p i, <p
< a. The critical number of fermion flavors N; where this
transition is observed coincides with the value of Ny where
Zf(pfmn) is maximal. Thus in a sense one observes a chiral
transition on a torus even for nonvanishing m, when there is
none in the infinite-volume and continuum limit. For the
choice m=0.0024¢* the resulting values of NS are plotted
against (Le?)'3 in Fig. 7. Apart from our smallest volumes
the resulting values of N} are significantly larger than in the
chiral limit. We also observe that in the infinite-volume limit
the critical number of flavors goes to infinity, in agreement
with our findings discussed in the previous paragraph. Away
from the chiral limit QED5 on a torus shows a chiral phase
transition when there is none in the infinite-volume and con-
tinuum limit. This implies that extreme care is needed when
one attempts to extract information on N} from lattice calcu-
lations with finite fermion masses.

Nevertheless it is interesting to compare to lattice results.
As explained above the important scale in assessing finite-
volume effects is the lowest momentum point available on
the torus compared with the generated fermion mass. In our
setup with antiperiodic boundary conditions in space and
time directions this scale is given by Lpge=\37/pmin. On the
lattice one usually implements antiperiodic boundary condi-
tions in the temporal direction and periodic ones in the two
spatial directions. This results in Ly,,=7/p;, on the lattice.
The couplings are related by e?>=1/(Ba), where B is the
dimensionless inverse coupling on the lattice and a the lattice
spacing. With e?=1 and B~ (1) one then obtains Lpgze”
= 3L,,8. This means that we should compare the results of
contemporary lattice calculations on 803-lattices with our
values for L=140. From the plot of Fig. 7 we then find
chiral symmetry breaking for N,=1, whereas at N,=1.5 the
system is in the chirally symmetric phase. This is in agree-
ment with recent lattice results'® and shows that these results
are compatible with our value of N;~3.8 in the infinite-
volume and continuum limit.

Finally we investigate the behavior of the chiral conden-
sate on a torus as a function of the explicit fermion mass. To
this end we extract the condensate from our fermion mass
function with the help of Eq. (15) at a given fixed ultraviolet
momentum cutoff. Our results for Ny=1.5 and different box
lengths L are shown in Fig. 8. Clearly, for small volumes the
condensate decreases linearly with decreasing bare fermion
mass m and extrapolates to zero in the chiral limit. For large
enough boxes this behavior changes, and we find a finite
value in this limit in agreement with results from our con-
tinuum DSEs. It is interesting to note that the curves for
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FIG. 8. (Color online) The chiral condensate as a function of the
fermion mass for a range of volumes at Ny=1.5. Small volumes
give rise to a vanishing chiral condensate and are nearly degenerate,
falsely indicating weak finite-volume effects.

small volumes are almost degenerate. A volume analysis in
this region would therefore indicate weak finite-volume ef-
fects where in fact there are large effects when the volume is
increased further. Again, this result should serve as a caveat
for the interpretation of lattice results.

V. SUMMARY

In this work we investigated volume effects on the chiral
phase transition of QED; as a function of the number of
flavors, Ny To this end we solved a coupled system of
Dyson-Schwinger equations for the fermion and photon
dressing functions in the infinite-volume and continuum limit
and on a three-torus. We worked in a truncation scheme that
in the infinite-volume and continuum limit reproduces a criti-
cal number of flavors N%=3.61-3.84, a number close to the
one obtained with more involved approximation schemes.’

Examining the same system on a torus we found consid-
erable volume effects. These can be explained due to the
presence of scales of vastly different magnitude in QED5. On
the one hand one has the natural scale a/ezsz/ 8, which is
of order one. On the other hand, the dynamically generated
fermion masses are orders of magnitude smaller. For ex-
ample, one has M(0)=0.05¢, for Ny=1 as can be seen from
Fig. 5. While the first scale remains of the same order, the
second one rapidly decreases when the number of flavors
becomes larger. When the generated fermion mass drops be-
low the infrared cutoff of the system, given by the inverse of
the box length, chiral symmetry breaking disappears and the
system falls into the chirally symmetric phase. We quantified
these effects and presented results for the critical number of
flavors as a function of the box length. They agree qualita-
tively with corresponding results of Ref. 20 determined in a
simpler truncation scheme and a different setup (continuum
limit with finite infrared cutoff). Quantitative differences are
small.

Our results confirm the notion that lattice calculations at
N;=1.5 or Ny=2 need very large physical volumes to see
dynamical chiral symmetry breaking, let alone quantify their
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finite-volume effects. Contemporary lattice results cannot yet
accommodate for these and consequently find a system in the
chirally symmetric phase in quantitative agreement with our
findings. We have shown that these results are nicely com-
patible with a critical number of flavors N;z3.61—3.84 in
the infinite-volume and continuum limit.
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